Speed Regulation of an Induction

نویسندگان

  • Akira Kumamoto
  • Satoshi Tada
  • Yoshihisa Hirane
چکیده

A novel approach of constructing a robust variable-speed drive system using an induction motor supplied from a voltage-source-type PWM inverter is discussed. The inverter is controlled so as to generate the fabricated terminal voltages based on the voltage-decoupled transvector control theory where neither a current feedback loop nor a current limiter circuit is required. Although the hardware for this decoupling method becomes simplified, it still has some disadvantages, such as the discrepancy between the command currents and actual currents. Incorporated into the drive system described herein is the optimal-speed regulator adopting the exact model-matching method, which fulfills the function of a compensator for unfavorable errors. The operating characteristics of the proposed drive system are compared with conventional PI control to verify the effectiveness under various conditions by investigating the transient responses for the step change of the speed command, the load torque, and so forth.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Seven-Level Direct Torque Control of Induction Motor Based on Artificial Neural Networks with Regulation Speed Using Fuzzy PI Controller

In this paper, the author proposes a sensorless direct torque control (DTC) of an induction motor (IM) fed by seven-level NPC inverter using artificial neural networks (ANN) and fuzzy logic controller. Fuzzy PI controller is used for controlling the rotor speed and ANN applied in switching select stator voltage. The control method proposed in this paper can reduce the torque, stator flux and to...

متن کامل

A Novel MRAS Based Estimator for Speed-Sensorless Induction Motor Drive

In this paper, a novel stator current based Model Reference Adaptive System (MRAS) estimator for speed estimation in the speed-sensorless vector controlled induction motor drives is presented. In the proposed MRAS estimator, measured stator current of the induction motor is considered as a reference model. The estimated stator current is produced in an adjustable model to compare with the measu...

متن کامل

Sensorless Vector Control of Linear Induction Motor on Primary and Secondary Flux Oriented based on Fuzzy PI Controller

This paper presents a sensorless system drive on primary flux oriented control (PFOC) and secondary flux oriented control (SFOC) for the linear induction motor (LIM) with taking into account end effect. Extended kalman filter (EKF) is applied to estimate LIM speed by measuring motor voltages and currents. In order to achieve desirable dynamic and robustness motor performance instead of traditio...

متن کامل

An indirect adaptive neuro-fuzzy speed control of induction motors

This paper presents an indirect adaptive system based on neuro-fuzzy approximators for the speed control of induction motors. The uncertainty including parametric variations, the external load disturbance and unmodeled dynamics is estimated and compensated by designing neuro-fuzzy systems. The contribution of this paper is presenting a stability analysis for neuro-fuzzy speed control of inducti...

متن کامل

A FUZZY-BASED SPEED CONTROLLER FOR IMPROVEMENT OF INDUCTION MOTOR'S DRIVE PERFORMANCE

Induction motors (IMs) are widely used in many industrial applications due to their robustness, low cost, simplicity and relative good efficiency. One of the major considerations for IMs is their speed control. PI (proportional-integrator) controllers are usually used as speed controller. Adjusting the gain of PI controller is time-consuming which needs thorough considerations. Hence, fuzzy con...

متن کامل

Current Limitation and Speed Drop Minimization in Optimal-Efficiency of Induction Motors

In conventional direct torque control (DTC), the stator flux is usually kept constant by controlling the x-axis component of the stator voltage in the stator flux reference frame. The torque is then controlled by the y-axis component of stator voltage. In this scenario, the stator current does not exceed its permissible value. However, in the so-called optimal efficiency mode, the induction mot...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2001